IS-IS • Part 1

Protocol Header

<table>
<thead>
<tr>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRPD</td>
<td>Packet Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version/Protocol ID Extension</td>
<td>ID Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R R R</td>
<td>PDU Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>Maximum Area Addresses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Length</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSAP Addressing

<table>
<thead>
<tr>
<th>NSAP Condensed Example</th>
<th>Interdomain Part</th>
<th>Domain-Specific Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFI</td>
<td>IDI</td>
<td>HODSP</td>
</tr>
<tr>
<td>Condensed Example</td>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>0005.80ff.f800.0000</td>
<td>0001</td>
</tr>
</tbody>
</table>

Interdomain Part (IDP)

Portion of the address used in routing between autonomous systems; assigned by ISO

Domain-Specific Part (DSP)

Portion of the address relevant only within the local AS

Authority and Format Identifier (AFI)

Identifies the authority which dictates the format of the address

Initial Domain Identifier (IDI)

An organization belonging to the AFI

High Order DSP (HODSP)

The area within the AS

System ID

Unique router identifier; 48 bits for Cisco devices (often taken from a MAC address)

NSAP Selector (SEL)

Identifies a network layer service; always 0x00 in a NET address

Network Types

<table>
<thead>
<tr>
<th>DIS Elected</th>
<th>Broadcast</th>
<th>Point-to-Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

| Neighbor Discovery | Yes | Yes |
| Hello/Dead Timers | 10/30 | 10/30 |

Troubleshooting

- `show ip route`
- `show ip protocols`
- `show [clns|isis] neighbor`
- `show isis database`
- `show isis spf-log`
- `show isis spf-events`
- `debug isis spf-events`
- `debug isis adjacencies-packets`
- `debug isis spf-statistics`
- `debug isis update-packets`

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Link-State</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Dijkstra</td>
</tr>
<tr>
<td>Metric</td>
<td>Default (10)</td>
</tr>
<tr>
<td>AD</td>
<td>115</td>
</tr>
<tr>
<td>Standard</td>
<td>ISO 10589</td>
</tr>
<tr>
<td>Protocols</td>
<td>IP, CLNS</td>
</tr>
<tr>
<td>Transport</td>
<td>Layer 2</td>
</tr>
</tbody>
</table>

Authentication

Plaintext, MD5

Routing Levels

- **Level 0**: Used to locate end systems
- **Level 1**: Routing within an area
- **Level 2**: Backbone between areas
- **Level 3**: Inter-AS routing

Terminology

Type-Length-Value (TLV)

Variable-length modular datasets

Link State PDU (LSP)

Carry TLVs encompassing link state information

Sequence Number Packet (SNP)

Used to request and advertise LSPs; can be complete (CSNP) or partial (PSNP)

Hello Packet

Establishes and maintains neighbor adjacencies

Designated Intermediate System

A pseudonode responsible for emulating point-to-point links across a multi-access segment

Adjacency Requirements

- Interface MTUs must match
- Levels must match
- Areas must match (if level 1)
- System IDs must be unique
- Authentication must succeed

DIS Election

- Highest-priority interface elected
- Highest SNPA (MAC/DLCI) breaks tie
- Highest system ID breaks SNPA tie
- Default interface priority is 64
- Current DIS may be preempted
TLV Types

<table>
<thead>
<tr>
<th>Name</th>
<th>Use</th>
<th>Name</th>
<th>Use</th>
<th>Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Area Addresses</td>
<td>Hello, LSP</td>
<td>6 IS Neighbors</td>
<td>Hello, L2 LSP</td>
<td>128 IP Internal Reach.</td>
<td>LSP</td>
</tr>
<tr>
<td>2 IS Neighbors</td>
<td>LSP</td>
<td>8 Padding</td>
<td>Hello</td>
<td>129 Protocols Supported.</td>
<td>Hello, LSP</td>
</tr>
<tr>
<td>3 ES Neighbors</td>
<td>L1 LSP</td>
<td>9 LSP Entries</td>
<td>SNP</td>
<td>131 IDRPI</td>
<td>SNP, L2 LSP</td>
</tr>
<tr>
<td>5 Prefix Neighbors</td>
<td>L2 LSP</td>
<td>10 Authentication</td>
<td>All</td>
<td>132 IP Interface Address.</td>
<td>Hello, LSP</td>
</tr>
</tbody>
</table>

Configuration Example

Router A1

```bash
interface FastEthernet0/0
description Area 1
ip address 192.168.1.1 255.255.255.0
ip router isis
isis circuit-type level-1

interface Serial1/0
no ip address
encapsulation frame-relay

interface Serial1/0.1 point-to-point
description To Area 2
ip address 10.0.0.1 255.255.255.252
ip router isis
isis circuit-type level-2-only

interface Serial1/0.2 point-to-point
description To Area 3
ip address 10.0.0.5 255.255.255.252
ip router isis
isis circuit-type level-2-only

router isis
net 49.0001.0000.0000.00a1.00
```

Router B1

```bash
interface FastEthernet0/0
description Area 2
ip address 192.168.2.1 255.255.255.0
ip router isis
isis circuit-type level-1

interface Serial1/0
no ip address
encapsulation frame-relay

interface Serial1/0.1 point-to-point
description To Area 1
ip address 10.0.0.2 255.255.255.252
ip router isis
isis circuit-type level-2-only

interface Serial1/0.2 point-to-point
description To Area 3
ip address 10.0.0.9 255.255.255.252
ip router isis
isis circuit-type level-2-only

router isis
net 49.0002.0000.0000.00b1.00
```

Router A2

```bash
interface FastEthernet0/0
description Area 1
ip address 192.168.1.2 255.255.255.0
ip router isis
isis circuit-type level-1

router isis
net 49.0001.0000.0000.00a2.00
```

Router B2

```bash
interface FastEthernet0/0
description Area 2
ip address 192.168.2.2 255.255.255.0
ip router isis
isis circuit-type level-1

router isis
net 49.0002.0000.0000.00b2.00
```